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Abstract— Neural Networks, especially Convolutional Neural Network [1] 

are becoming increasingly popular in IoT edge devices today for 

executing data analytics right at the source without transmitting to Cloud 

Computing centers. So that it will be reduced latency as well as energy 

consumption for data communication. In this paper, we will compare 

CMSIS-NN and uTensor: low energy consumption microcontrollers. 

Most classification tasks have always-on, and real-time requirements, 

which limits the total number of operations per neural network inference. 

So that, with image classification model, microcontrollers will execute 

lower frame per second than GPU and embedded CPU. CMSIS-NN is a 

collection of efficient kernels which was developed to maximize the 

performance and minimize the memory footprint of Neural Network 

applications. Allow deploy machine learning models on ARM Cortex-M 

processors for intelligent IoT edge devices. 

I. INTRODUCTION 
 

Connected devices or Internet of Things (IoT) have been rapidly 
increasing over the past few years and are predicted to reach 1 trillion 
across various market segments by 2035. As we known, the number 
of the IoT devices more and more increases, this will place a 
considerable burden on the network bandwidth, so that latency will 
be challenging when running the AIoT applications [2] in the future. 
Dependency on the cloud computing makes it harder to deploy AIoT 
application in areas with low and unreliable network connectivity. 
The solution for this problem is edge computing, data will not be 
transmitted to cloud, they will be processed and executed right at the 
source after collected by sensors of IoT devices. Thus, this solution 
will help us to reduce the latency as well as saving energy for data 
communication. 

Deep Neural Network (DNN) [3] based solutions have performed 
very high accuracies for many complex applications such as 
computer vision, natural language processing, image classification, 
optical character recognition, object detection, and speech 
recognition, etc. Due to complex computation and hardware resource 
requirements, these executions of Neural Networks must be 
performed on cloud computing which has high performance server 
CPUs as well as GPUs. As mentioned above, it will add latency to 
the AIoT applications. Executing right at the source of data on small 
microcontrollers can reduce the overall latency and energy 
consumption of data communication between the IoT devices and 
the cloud. However, we have to deal with these challenges when 
deploy Neural Network model on microcontrollers in the edge side. 

In this paper, we have surveyed CMSIS-NN [4][5], which is a 
collection of efficient neural network kernels developed to maximize 
the performance and minimize the memory footprint of neural 
networks on ARM Cortex-M7 processor. Furthermore, we will 
present the workflow to deploy neural networks on Cortex-M7 with 
and without CMSIS-NN. Caffe [6] is the deep learning framework 
which is made with expression, speed, and modularity in mind by 
Berkeley AI Research. We used Caffe for training the image 
classification models. The models trained will be quantized to reduce 
the size of the neural network and avoid floating point computations, 
that are more computationally expensive. Then, we used tools to 

convert the model weight to C++ code that can be compiled and run 
on the microcontroller. For the Cortex-M7’s hardware, 
STM32F746ZGT6U [7] has been selected for comparing for 
performing image classification, especially neural networks model 
trained on CIFAR-10, MINIST, SVHN datasets. 

 

II. CONTROL METHODS 

II.1. Model with CMSIS-NN 

CMSIS-NN is a collection of optimized neural network functions for 
ARM Cortex-M core microcontrollers enabling neural networks and 
machine learning being pushed into the end node of AIoT applications. 
It has implemented popular neural network layer types, such as 
convolution, depth separable, fully connected, pooling and activation 
(ReLU). Supporting a model trained with a popular framework such 
as TensorFlow, Caffe. The weights and biases will first be quantized 
to 8-bit or 16-bit integers then deployed to the microcontroller. The 
best performance was achieved by leveraging SIMD instructions 
features of the CPU to improve parallelism available for Cortex-M4 
and Cortex-M7 core microcontrollers. 

 

 

 

 

 

 

 

 

 

Figure. 1. Block Diagram CMSIS-NN 
 

From pre-trained model CIFAR-10 by Caffe, the model will be 
translated to C++ file to be able to deploy on ARM. Figure 1 show 
how to build model with CMSIS-NN and deploy it on MCU is follow: 
1) Quantize the model: Once we have the CIFAR-10 trained model, 

we need to optimize it for microcontroller. We use ARM 
quantization script to convert the model weights and 14 activations 
from 32-bit floating point to an 8-bit and fixed-point format. This 
work will reduce the size of the network and avoid floating point 
computations. 

2) Convert the model: Then we need convert the model into C++ file 
that we can include it into image recognition application. Use 
generate script to get the quantization parameters and network 
graph connectivity and generates the code consisting of NN 
function calls. 

3) Build image recognition application: We need include file to main 

A
p
p
li

ca
ti

o
n
 c

o
d
e 

NNFunction 

 Convolution 

 Pooling 

 Fully-connected 

 Activations 

NNSupportFunctions 

 Data type conversion 

 Activation tables 

2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)

978-1-7281-3038-5/19/$31.00 ©2019 IEEE

Authorized licensed use limited to: Product Marketing IEL. Downloaded on September 16,2020 at 19:11:23 UTC from IEEE Xplore.  Restrictions apply. 



file and add classification capabilities to use neural network on 
ARM. Modify function and call run command to run neural 
network. We still need image as input of NN so we resize and 
translate picture to array can work in C++. 

4) Deploy on ARM-Cortex M: Use MbedOS [8] compiler to 
generate binary file and upload to the MCU processor. 

II.2. Model with MicroTensor 

MicroTensor (uTensor) [9] ARM’s early entrant into edge machine 
learning, takes TensorFlow models and compiles into highly 
efficient code for edge processing. uTensor converts machine 
learning models to readable and self-contained C++ source files, to 
simplify the integration with any embedded project. It is especially 
designed for low-power, constrained embedded devices, and it has 
deep roots in TensorFlow and MbedOS. From this merger, we have 
a great opportunity to bring uTensor’s innovations to TensorFlow 
and ensure it is easy for all developers to use and support a wide 
range of ARM Cortex-M hardware. All of developers share a 
common vision to bring machine learning to the edge. We are 
looking forward to creating a state-of-the-art micro-inference 
framework together.  

 

 

 

 

 

 
 

Figure. 2. Workflow of uTensor 
 

This workflow from is Figure 2 is different from deploying neural 
network model with CMSIS-NN. Instead of training by Caffe, this 
model will be trained by TensorFlow [10]. The neural network 
models after trained will be convert to C++ code by tools called 
uTensor as mentioned above. Here is workflow for deploying Neural 
Network model CIFAR-10 to ARM Cortex-M7. 

1) Training Neural Network model by TensorFlow： From CIFAR-
10 dataset, we use TensorFlow and images from CIFAR-10 
dataset to train the network. Then convert trained model to model 
file to use for uTensor-cli. 

2) Translate the Neural Network model to C++ code by uTensor-Cli: 
Use uTensor-cli to identify the output nodes and generate the C++ 
files from CIFAR-10 model. 

3) Compile and flash project to ARM Cortex-M by Mbed OS 
compiler: We need include file to main file and add classification 
capabilities to use neural network on ARM. Modify this function 
and call run command to run neural network. We still need image 
as input of NN so we resize and translate picture to array can work 
in C++. 

4) Deploy on ARM Cortex-M: Use MbedOS compiler to generate 
binary file and burn to the board. 

 

III. EXPERIMENTAL RESULTS 

Next, we applied these two different ways to deploy neural network 
models with three datasets. Three common datasets that we used are 
MNIST (handwritten digits), CIFAR-10, Street View House 
Number (SVHN). Two models have not yet completed are SVHN 
without CMSIS-NN and MNIST with CMSIS-NN. The model 
MNIST with CMSIS-NN was not completed because of it has two 
Fully Connected layers which generated a lot of weights could not 
fit the microcontroller’s memory. We could only complete 
measuring the accuracy and the performance of microcontroller 
when running neural network model. 

Due to microcontroller’s memory, we could not put in its memory 
many input images. Accuracy was measured by randomly run 100 
samples and calculate the error rates. The performance is measured 
by calculate how long does it took the model to predict label. Before 
running the model, we initiated the time object then started counting 
the timer, let the model run, then stopped the timer and calculate how 
many seconds to complete the task. We calculated the performance 
by frames per second (FPS). From table 1, we can see model with 
uTensor gave us results of performance is better than model with 
Caffe & CMSIS-NN. 

Table 1. Comparison between Caffe & CMSIS-NN and uTensor 

 Caffe & CMSIS-NN uTensor 

Model/ 

Datasets 

Error Rate 

(%) 
Performance 

Error Rate 

(%) 
Performance 

CIFAR-10 26% 9.09 FPS 15% 2.22 FPS 

MNIST 
Out of 

memory 

Out of 

memory 
10% 7.69 FPS 

SVHN 32% 8.33 FPS 
Out of 

memory 

Out of 

memory 

IV. CONCLUSION 

In this paper, we were running the neural network with pre-defined 
input data which is no reality when considering variety choices of 
sensors, camera, microphone, accelerometer all can be easily 
integrated with the microcontroller to acquire real-time data form the 
environment. There are endless possibilities when this neural network 
framework is leveraged to process those data and extract useful 
information. The Internet of Things is slowly permeating every aspect 
of our lives. By using CMSIS-NN, we can easily integrate Machine 
Learning on ARM then connect to AIoT system to make an intelligent 
AIoT system. There is an increasing interest in deploying the deep 
learning algorithms on low-power edge devices such as ARM Cortex-
M microcontroller systems. CMSIS-NN can raise speed, and reduce 
power cost of system so it can help us easily use in many cases. 
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