
AIoT Solution Survey and Comparison in Machine

Learning on Low-cost Microcontroller
Hoang-The Pham1, Minh-Anh Nguyen1, Chi-Chia Sun12

1Department of Electrical Engineering
2Smart Machinery and Intelligent Manufacturing Research Center

National Formosa University, Yunlin, Taiwan

Abstract— Neural Networks, especially Convolutional Neural Network [1]

are becoming increasingly popular in IoT edge devices today for

executing data analytics right at the source without transmitting to Cloud

Computing centers. So that it will be reduced latency as well as energy

consumption for data communication. In this paper, we will compare

CMSIS-NN and uTensor: low energy consumption microcontrollers.

Most classification tasks have always-on, and real-time requirements,

which limits the total number of operations per neural network inference.

So that, with image classification model, microcontrollers will execute

lower frame per second than GPU and embedded CPU. CMSIS-NN is a

collection of efficient kernels which was developed to maximize the

performance and minimize the memory footprint of Neural Network

applications. Allow deploy machine learning models on ARM Cortex-M

processors for intelligent IoT edge devices.

I. INTRODUCTION

Connected devices or Internet of Things (IoT) have been rapidly
increasing over the past few years and are predicted to reach 1 trillion
across various market segments by 2035. As we known, the number
of the IoT devices more and more increases, this will place a
considerable burden on the network bandwidth, so that latency will
be challenging when running the AIoT applications [2] in the future.
Dependency on the cloud computing makes it harder to deploy AIoT
application in areas with low and unreliable network connectivity.
The solution for this problem is edge computing, data will not be
transmitted to cloud, they will be processed and executed right at the
source after collected by sensors of IoT devices. Thus, this solution
will help us to reduce the latency as well as saving energy for data
communication.

Deep Neural Network (DNN) [3] based solutions have performed
very high accuracies for many complex applications such as
computer vision, natural language processing, image classification,
optical character recognition, object detection, and speech
recognition, etc. Due to complex computation and hardware resource
requirements, these executions of Neural Networks must be
performed on cloud computing which has high performance server
CPUs as well as GPUs. As mentioned above, it will add latency to
the AIoT applications. Executing right at the source of data on small
microcontrollers can reduce the overall latency and energy
consumption of data communication between the IoT devices and
the cloud. However, we have to deal with these challenges when
deploy Neural Network model on microcontrollers in the edge side.

In this paper, we have surveyed CMSIS-NN [4][5], which is a
collection of efficient neural network kernels developed to maximize
the performance and minimize the memory footprint of neural
networks on ARM Cortex-M7 processor. Furthermore, we will
present the workflow to deploy neural networks on Cortex-M7 with
and without CMSIS-NN. Caffe [6] is the deep learning framework
which is made with expression, speed, and modularity in mind by
Berkeley AI Research. We used Caffe for training the image
classification models. The models trained will be quantized to reduce
the size of the neural network and avoid floating point computations,
that are more computationally expensive. Then, we used tools to

convert the model weight to C++ code that can be compiled and run
on the microcontroller. For the Cortex-M7’s hardware,
STM32F746ZGT6U [7] has been selected for comparing for
performing image classification, especially neural networks model
trained on CIFAR-10, MINIST, SVHN datasets.

II. CONTROL METHODS

II.1. Model with CMSIS-NN

CMSIS-NN is a collection of optimized neural network functions for
ARM Cortex-M core microcontrollers enabling neural networks and
machine learning being pushed into the end node of AIoT applications.
It has implemented popular neural network layer types, such as
convolution, depth separable, fully connected, pooling and activation
(ReLU). Supporting a model trained with a popular framework such
as TensorFlow, Caffe. The weights and biases will first be quantized
to 8-bit or 16-bit integers then deployed to the microcontroller. The
best performance was achieved by leveraging SIMD instructions
features of the CPU to improve parallelism available for Cortex-M4
and Cortex-M7 core microcontrollers.

Figure. 1. Block Diagram CMSIS-NN

From pre-trained model CIFAR-10 by Caffe, the model will be
translated to C++ file to be able to deploy on ARM. Figure 1 show
how to build model with CMSIS-NN and deploy it on MCU is follow:
1) Quantize the model: Once we have the CIFAR-10 trained model,

we need to optimize it for microcontroller. We use ARM
quantization script to convert the model weights and 14 activations
from 32-bit floating point to an 8-bit and fixed-point format. This
work will reduce the size of the network and avoid floating point
computations.

2) Convert the model: Then we need convert the model into C++ file
that we can include it into image recognition application. Use
generate script to get the quantization parameters and network
graph connectivity and generates the code consisting of NN
function calls.

3) Build image recognition application: We need include file to main

A
p
p
li

ca
ti

o
n
 c

o
d
e

NNFunction

 Convolution

 Pooling

 Fully-connected

 Activations

NNSupportFunctions

 Data type conversion

 Activation tables

2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)

978-1-7281-3038-5/19/$31.00 ©2019 IEEE

Authorized licensed use limited to: Product Marketing IEL. Downloaded on September 16,2020 at 19:11:23 UTC from IEEE Xplore. Restrictions apply.

file and add classification capabilities to use neural network on
ARM. Modify function and call run command to run neural
network. We still need image as input of NN so we resize and
translate picture to array can work in C++.

4) Deploy on ARM-Cortex M: Use MbedOS [8] compiler to
generate binary file and upload to the MCU processor.

II.2. Model with MicroTensor

MicroTensor (uTensor) [9] ARM’s early entrant into edge machine
learning, takes TensorFlow models and compiles into highly
efficient code for edge processing. uTensor converts machine
learning models to readable and self-contained C++ source files, to
simplify the integration with any embedded project. It is especially
designed for low-power, constrained embedded devices, and it has
deep roots in TensorFlow and MbedOS. From this merger, we have
a great opportunity to bring uTensor’s innovations to TensorFlow
and ensure it is easy for all developers to use and support a wide
range of ARM Cortex-M hardware. All of developers share a
common vision to bring machine learning to the edge. We are
looking forward to creating a state-of-the-art micro-inference
framework together.

Figure. 2. Workflow of uTensor

This workflow from is Figure 2 is different from deploying neural
network model with CMSIS-NN. Instead of training by Caffe, this
model will be trained by TensorFlow [10]. The neural network
models after trained will be convert to C++ code by tools called
uTensor as mentioned above. Here is workflow for deploying Neural
Network model CIFAR-10 to ARM Cortex-M7.

1) Training Neural Network model by TensorFlow： From CIFAR-
10 dataset, we use TensorFlow and images from CIFAR-10
dataset to train the network. Then convert trained model to model
file to use for uTensor-cli.

2) Translate the Neural Network model to C++ code by uTensor-Cli:
Use uTensor-cli to identify the output nodes and generate the C++
files from CIFAR-10 model.

3) Compile and flash project to ARM Cortex-M by Mbed OS
compiler: We need include file to main file and add classification
capabilities to use neural network on ARM. Modify this function
and call run command to run neural network. We still need image
as input of NN so we resize and translate picture to array can work
in C++.

4) Deploy on ARM Cortex-M: Use MbedOS compiler to generate
binary file and burn to the board.

III. EXPERIMENTAL RESULTS

Next, we applied these two different ways to deploy neural network
models with three datasets. Three common datasets that we used are
MNIST (handwritten digits), CIFAR-10, Street View House
Number (SVHN). Two models have not yet completed are SVHN
without CMSIS-NN and MNIST with CMSIS-NN. The model
MNIST with CMSIS-NN was not completed because of it has two
Fully Connected layers which generated a lot of weights could not
fit the microcontroller’s memory. We could only complete
measuring the accuracy and the performance of microcontroller
when running neural network model.

Due to microcontroller’s memory, we could not put in its memory
many input images. Accuracy was measured by randomly run 100
samples and calculate the error rates. The performance is measured
by calculate how long does it took the model to predict label. Before
running the model, we initiated the time object then started counting
the timer, let the model run, then stopped the timer and calculate how
many seconds to complete the task. We calculated the performance
by frames per second (FPS). From table 1, we can see model with
uTensor gave us results of performance is better than model with
Caffe & CMSIS-NN.

Table 1. Comparison between Caffe & CMSIS-NN and uTensor

 Caffe & CMSIS-NN uTensor

Model/

Datasets

Error Rate

(%)
Performance

Error Rate

(%)
Performance

CIFAR-10 26% 9.09 FPS 15% 2.22 FPS

MNIST
Out of

memory

Out of

memory
10% 7.69 FPS

SVHN 32% 8.33 FPS
Out of

memory

Out of

memory

IV. CONCLUSION

In this paper, we were running the neural network with pre-defined
input data which is no reality when considering variety choices of
sensors, camera, microphone, accelerometer all can be easily
integrated with the microcontroller to acquire real-time data form the
environment. There are endless possibilities when this neural network
framework is leveraged to process those data and extract useful
information. The Internet of Things is slowly permeating every aspect
of our lives. By using CMSIS-NN, we can easily integrate Machine
Learning on ARM then connect to AIoT system to make an intelligent
AIoT system. There is an increasing interest in deploying the deep
learning algorithms on low-power edge devices such as ARM Cortex-
M microcontroller systems. CMSIS-NN can raise speed, and reduce
power cost of system so it can help us easily use in many cases.

REFERENCES

[1] Keiron O’Shea1and Ryan Nash, “An Introduction to Convolutional

Neural Networks,” arXiv:1511.08458, 2015.

[2] Marjan Gusev, Schahram Dustdar, “Going Back to the Roots—The

Evolution of Edge Computing, An IoT Perspective,” IEEE Internet

Computing, Vol. 22, No. 2, pp. 1-5, 2018.

[3] Michael A. Nielsen, “Neural Networks and Deep Learning,”

Determination Press, pp. 167-176, 2015.

[4] Liangzhen Lai, Naveen Suda, and Vikas Chandra, “CMSIS-NN: Efficient

Neural Network Kernels for ARM Cortex-M CPUs,” arXiv:1801.06601,

2018.

[5] Liangzhen Lai and Naveen Suda, “Enabling Deep Learning at the IoT

Edge. International Conference on Computer-Aided Design,” pp. 135:1-

135:6, 2018.

[6] Delia Velasco-Montero, Jorge Femández-Bemi, Ricardo Carmona-Gálán,

Angel Rodríguez-Vázquez, “On the Correlation of CNN Performance and

Hardware Metrics for Visual Inference on a Low-Cost CPU-based

Platform,” IEEE International Conference on Systems, Signals and Image

Processing, pp. 250-252, 2019

[7] “STM32F746ZG datasheet” by STMicroelectronics company

https://www.st.com/resource/en/datasheet/stm32f746zg.pdf

[8] “Mbed OS” by Arm Limited available here https://os.mbed.com/

[9] Neil Tan, “uTensor- AI inference library based on Mbed and

TensorFlow,” https://github.com/uTensor/uTensor

[10] Tom Hope, Yehezkel S. Resheff and Itay Lieder, “Learning

TensorFlow,” pp. 1-21 O’Reilly Media, 2017.

Data C++ Graph Binary Run

Collect
uTensor

Generate
Train Compile Flash

2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)

978-1-7281-3038-5/19/$31.00 ©2019 IEEE

Authorized licensed use limited to: Product Marketing IEL. Downloaded on September 16,2020 at 19:11:23 UTC from IEEE Xplore. Restrictions apply.

